

Overview

USQ Decimals

Decimals: Fractions in other forms

Study Support
USQ Library

This presentation will cover:

- the link between fractions and decimals;
- converting between fractions and decimals;
- percentages; and
- rates.
- Decimals are just another way of writing fractions, and some would say a more convenient way, particularly when it comes to calculating.
- Decimals are special fractions where the denominators are powers of 10 (for example, $10=10^{1}, 100=10^{2}, 1000=10^{3}$).

Decimals and fractions

Convert the following fractions to decimals:

1. $\frac{1}{8}$
2. $-\frac{7}{10}$
3. $\frac{1}{3}$
4. $-\frac{25}{11}$
5. $1 \frac{3}{4}$

Convert the following decimals to fractions. Express your answer in simplest form.

1. 0.7
2. 0.8
3. 0.35
4. -0.58
5. 0.075
6. -0.625
7. 4.02
8.

$$
\frac{1}{8}=1 \div 8=0.125
$$

2.
3.

$$
\frac{1}{3}=1 \div 3=0.333 \ldots=0 . \dot{3}
$$

4.

$$
\frac{-25}{11}=-25 \div 11 \approx-2.27272727 \cdots=-2 . \dot{2} \dot{7}
$$

5.

$$
1 \frac{3}{4}=\frac{7}{4}=7 \div 4=1.75 .
$$

5. $0.075=\frac{75^{3}}{1000^{40}}=\frac{3}{40}$
6.

$$
-0.625=\frac{-625^{-25}}{1000^{40}}=\frac{-25^{-5}}{40^{8}}=\frac{-5}{8} .
$$

7.

$$
4.02=\frac{4 \theta 2^{201}}{100^{50}}=4 \frac{1}{50}
$$

In mathematics, a percentage is a way of expressing a number as a fraction of 100 (per cent meaning 'per hundred').
For example, 5% means $\frac{5}{100}$.

When converting to a percentage, for a fraction and multiply by 100% :

$$
\frac{a}{b} \xrightarrow[\times 100]{ } \%
$$

For example: A student receives 15 marks out of a total of 20 for an assignment, what is the percentage of marks they received?

$$
\frac{15}{20} \times 100 \%=75 \%
$$

Converting from a percentage to a fraction or decimal

Divide the percentage by 100 :

$$
\frac{a}{b} \longleftarrow \div \frac{}{\div} \%
$$

For example: Convert 65% to a

1. a fraction; and
2. a decimal.

Solution:
1.
2.

$$
65 \%=\frac{65}{100}=\frac{13}{20}
$$

$$
65 \%=65 \div 100=0.65
$$ two places to the left.

Percentages: Exercises

Write each of the following as a percentage.

1. 8 out of 10
2. 250 mL out of 400 mL
3. 800 g out of 2000 g
4. $\$ 25$ out of $\$ 60$
5. 50 mL out of 2 L
6. 2×10^{4} light years out of 3.5×10^{3} light years
note the shift of the decimal place

Percentages: Answers

USQ Calculating a percentage increase or decrease

1. 8 out of $10=\frac{8}{10} \times 100 \%=80 \%$.
2. 250 mL out of $400 \mathrm{~mL}=\frac{250}{400} \times 100 \%=62.5 \%$.
3. 800 g out of $2000 \mathrm{~g}=\frac{800}{2000} \times 100 \%=40 \%$.
4. $\$ 25$ out of $\$ 60=\frac{25}{60} \times 100 \%=41.7 \%$.
5. 50 mL out of $2 \mathrm{~L}=\frac{50}{2000} \times 100 \%=2.5 \%$.
6.

$$
\begin{aligned}
2 \times & 10^{4} \text { light years out of } 3.5 \times 10^{3} \\
& =\frac{2 \times 10^{4}}{3.5 \times 10^{3}} \times 100 \% \\
& \approx\left(0.5714 \times 10^{4-3}\right) \times 100 \% \\
& \approx 571.4 \% .
\end{aligned}
$$

Percentage decrease example

The value of a car decreased from $\$ 20000$ to $\$ 16000$. Find the percentage decrease.

$$
\begin{aligned}
\text { The percentage decrease } & =\frac{\text { amount of decrease }}{\text { original amount }} \times 100 \% \\
& =\frac{\$ 20000-\$ 16000}{\$ 20000} \times 100 \% \\
& =\frac{\$ 4000}{\$ 20000} \times 100 \% \\
& =20 \%
\end{aligned}
$$

Therefore the percentage decrease is 20%

Percentage increase and percentage decrease are used in many different contexts
To calculate the percentage change:

1. calculate the actual increase of decrease;
2. divide the increase or decrease by the original amount;
3. multiply by 100 to convert to a percentage

Percentage change $=\frac{\text { change amount }}{\text { original amount }} \times 100 \%$.

An item of jewellery increased in value from $\$ 16000$ to $\$ 20000$.

$$
\begin{aligned}
\text { The percentage increase } & =\frac{\text { amount of increase }}{\text { original amount }} \times 100 \% \\
& =\frac{\$ 20000-\$ 16000}{\$ 16000} \times 100 \% \\
& =\frac{\$ 4000}{\$ 16000} \times 100 \% \\
& =25 \%
\end{aligned}
$$

Therefore the percentage increase is 25%.

Calculate the percentage change (round any answer to 1 decimal place):

1. A product increases from $\$ 15$ to $\$ 40$.
2. Something increases from 75 to 135 .
3. A product is reduced from $\$ 250$ to $\$ 210$.
4. A car depreciates from $\$ 26000$ to $\$ 19000$.

Fractions in other forms: Rates

2.
3.

Percentage decrease
$=\frac{\text { decrease amount }}{\text { original amount }} \times 100 \%$
$=\frac{250-210}{250} \times 100 \%$
$\begin{aligned} & \begin{array}{l}\text { Percentage increase } \\ \text { increase amount }\end{array} \\ = & \frac{\text { original amount }}{} \times 100 \% \\ = & \frac{26000-19000}{26000} \times 100 \% \\ \approx & 19.2 \%\end{aligned}$
$=16 \%$.
4.
1.

$$
\begin{aligned}
& \begin{array}{l}
\text { Percentage increase } \\
\text { increase amount }
\end{array} \\
= & \frac{\text { original amount }}{\text { on }} \times 100 \% \\
= & \frac{40-15}{15} \times 100 \% \\
= & 166 \frac{2}{3} \% \approx 166.7 \%
\end{aligned}
$$

Complete the following.

1. 300 kilometres in 6 hours is a rate of \qquad kilometres per hour.
2. $\$ 27$ for 9 metres is a rate of \qquad
\square dollars per metre.
3. 42 hectares in 7 days is a rate of \qquad hectares per day.
4. 120 runs for 4 wickets is a rate of \qquad runs per wicket.
5. $\$ 320$ for 40 hours work is a rate of \square dollars per hour.
6. 300 kilometres in 6 hours is a rate of 50 kilometres per hour.
7. $\$ 27$ for 9 metres is a rate of 3 dollars per metre.
8. 42 hectares in 7 days is a rate of 6 hectares per day.
9. 120 runs for 4 wickets is a rate of 30 runs per wicket.
10. $\$ 320$ for 40 hours work is a rate of 8 dollars per hour.

Further help
usq.edu.au/library

