

Fractions

Study Support

USQ Library

- A fraction represents a part of a whole or, more generally, any number of equal parts.
- The denominator (the number on the bottom of the fraction) tells us how many parts the object is divided into.
- The numerator (the part on the top of the fraction) tells us how many of these parts we have.
- An improper fraction is a fraction where the numerator is larger than the denominator, for example, $\frac{3}{2}$.
- A mixed number has a whole number with a fraction, for example $1 \frac{1}{2}$.
- Equivalent fractions have different names for the same value, for example $\frac{1}{2}$ is equivalent to $\frac{2}{4}$.
- Equivalent fractions can be made by multiplying or dividing both the numerator and the denominator by the same number.
- The process of dividing the numerator and denominator by the same number is called simplifying fractions, for example $\frac{6}{12}$ is equivalent to $\frac{1}{2}$, which is in simplest form.

Write equivalent fraction for each of the following by making the new denominator the number given in the brackets.

1. $\frac{2}{3}(9)$
2. $\frac{4}{5}(20)$
3. $\frac{-3}{4}$ (8)
4. $\frac{-2}{7}(28)$
5. $\frac{7}{12}(60)$

Equivalent fractions: Answers

$$
\frac{2}{3}=\frac{2 \times 3}{3 \times 3}=\frac{6}{9}
$$

2.

$$
\frac{4}{5}=\frac{4 \times 4}{5 \times 4}=\frac{16}{20}
$$

3.

$$
\frac{-3}{4}=\frac{-3 \times 2}{4 \times 2}=\frac{-6}{8} .
$$

4.

$$
\frac{-2}{7}=\frac{-2 \times 4}{7 \times 4}=\frac{-8}{28} .
$$

5.

$$
\frac{7}{12}=\frac{7 \times 5}{12 \times 5}=\frac{35}{60}
$$

Equivalent fractions: exercise

Simplify the following fractions, giving your answer in its simplest form.

1. $\frac{9}{15}$
2. $\frac{-3}{18}$
3. $\frac{8}{10}$
4. $\frac{-12}{16}$
5. $\frac{30}{40}$
6. $\frac{2000}{6000}$
7. Dividing by 3 :

$$
\frac{9}{15}=\frac{9^{3}}{15^{5}}=\frac{3}{5} .
$$

5. We are dividing by 10 but in practice we just cancel the zeros:
6. Dividing by 3 :

$$
\frac{30}{40}=\frac{3 \emptyset}{4 \emptyset}=\frac{3}{4}
$$

$$
\frac{-3}{18}=\frac{-3^{-1}}{18^{6}}=\frac{-1}{6}
$$

3. Dividing by 2 :
$\frac{8}{10}=\frac{8^{4}}{10^{5}}=\frac{4}{5}$.
4. Dividing by 4 :

$$
\frac{-12}{16}=\frac{-12^{-3}}{16^{4}}=\frac{-3}{4}
$$

Mixed numbers and improper fractions
Express these improper fractions as mixed numbers.

1. $\frac{5}{3}$
2. $\frac{45}{20}$
3. $\frac{-16}{7}$
4. $\frac{40}{25}$
5. $\frac{-35}{14}$
6.

$$
\frac{5}{3}=1 \frac{2}{3}
$$

2.

$$
\frac{45^{9}}{20^{4}}=\frac{9}{4}=2 \frac{1}{4}
$$

3.

$$
\frac{-16}{7}=-2 \frac{2}{7}
$$

4.

$$
\frac{40^{8}}{25^{5}}=\frac{8}{5}=1 \frac{3}{5}
$$

5.

$$
\frac{-35^{-5}}{14^{2}}=\frac{-5}{2}=-2 \frac{1}{2}
$$

Express these mixed numbers as improper fractions.

1. $3 \frac{1}{4}$
2. $9 \frac{2}{11}$
3. $-5 \frac{2}{3}$
4. $102 \frac{5}{12}$
5. $-21 \frac{2}{5}$

Mixed numbers and improper fractions

1.

$$
3 \frac{1}{4}=\frac{3 \times 4+1}{4}=\frac{13}{4} .
$$

2.

$$
9 \frac{2}{11}=\frac{9 \times 11+2}{11}=\frac{101}{11} .
$$

3.

$$
-5 \frac{2}{3}=-\left(\frac{5 \times 3+2}{3}\right)=-\frac{17}{3} .
$$

4.

$$
102 \frac{5}{12}=\frac{102 \times 12+5}{12}=\frac{1,229}{12} .
$$

5.

$$
-21 \frac{2}{5}=-\left(\frac{21 \times 5+2}{5}\right)=-\frac{107}{5} .
$$

Adding fractions: Example

For example:

$$
\begin{array}{rlr}
& \frac{2}{5}+\frac{3}{8} & \text { find the common denominator: } 5 \times 8=40 \\
= & \frac{2 \times 8}{5 \times 8}+\frac{3 \times 5}{8 \times 5} & \\
= & \frac{16}{40}+\frac{15}{40} & \frac{16+15}{40} \\
= & \frac{31}{40}, & \text { remember to check if it is in simplest form. Yes it is. }
\end{array}
$$

- To add or subtract fractions they need to have the same denominator
- Remember that fractions should always be left in lowest form.
- When adding mixed numbers (whole number with a fraction), you add the whole numbers, then the fractions.
- When subtracting mixed numbers, convert to improper fractions, before doing the subtraction.

$$
\begin{aligned}
3 \frac{2}{5}+2 \frac{3}{8} & =\frac{17}{5}+\frac{19}{8} \\
& =\left(\frac{17}{5} \times \frac{8}{8}\right)+\left(\frac{19}{8} \times \frac{5}{5}\right) \\
& =\frac{136}{40}+\frac{95}{40} \\
& =\frac{231}{40} \\
& =5 \frac{31}{40}
\end{aligned}
$$

Subtraction of fractions: example

Calculate:

$$
\frac{1}{6}-\frac{7}{9}
$$

Find the lowest common denominator: 18 .
Now calculate:

$$
\begin{aligned}
\frac{1}{6}-\frac{7}{9} & =\left(\frac{1}{6} \times \frac{3}{3}\right)-\left(\frac{7}{9} \times \frac{2}{2}\right) \\
& =\frac{3}{18}-\frac{14}{18} \\
& =\frac{3-14}{18} \\
& =-\frac{11}{18}
\end{aligned}
$$

$$
\begin{aligned}
\frac{7}{8} \times \frac{16}{21} & =\frac{7 \times 16}{8 \times 21} \\
& =\frac{7^{1} \times 16^{2}}{8^{1} \times 21^{3}} \\
& =\frac{1 \times 2}{1 \times 3} \\
& =\frac{2}{3}
\end{aligned}
$$

- To multiply to fractions, multiply the numerators and the denominators.
- Common factors can be cancelled either during the multiplication or at the end to give answer in simplest form.
- To multiply mixed numbers, convert them to improper fractions first.

For example:

$$
\begin{aligned}
-3 \frac{1}{3} \times-7 \frac{1}{2} & =-\frac{10}{3} \times-\frac{15}{2} \\
& =\frac{-10^{5} \times-15^{5}}{3^{1} \times 2^{1}} \\
& =\frac{-5 \times-5}{1 \times 1} \\
& =25 .
\end{aligned}
$$

- Dividing by a fraction is the same as multiplying by its reciprocal (fraction turned upside down);
- If dividing with mixed numbers, remember to convert to improper fractions first.

Evaluate the following without a calculator.

$$
\begin{aligned}
\frac{3}{4} \div \frac{2}{3} & =\frac{3}{4} \times \frac{3}{2} \\
& =\frac{3 \times 3}{4 \times 2} \\
& =\frac{9}{8} \\
& =1 \frac{1}{8} .
\end{aligned}
$$

1. $\frac{3}{4} \div \frac{9}{20}$
2. $-\frac{21}{25} \div \frac{35}{30}$
3. $4 \frac{2}{5} \div 2 \frac{7}{10}$
4. $7 \frac{5}{8} \div-3 \frac{1}{2}$
5. $-2 \frac{1}{4} \div-\frac{3}{8}$

Check your answers on the calculator.
1.

$$
\begin{aligned}
\frac{3}{4} \div \frac{9}{20} & =\frac{3}{4} \times \frac{20}{9} \\
& =\frac{3^{1} \times 20^{5}}{4^{1} \times 9^{3}} \\
& =\frac{1 \times 5}{1 \times 3} \\
& =\frac{5}{3} \\
& =1 \frac{2}{3}
\end{aligned}
$$

Answers (cont)

3.

$$
\begin{aligned}
4 \frac{2}{5} \div 2 \frac{7}{10} & =\frac{22}{5} \div \frac{27}{10} \\
& =\frac{22}{5} \times \frac{10}{27} \\
& =\frac{22 \times 10^{2}}{51 \times 27} \\
& =\frac{22 \times 2}{1 \times 27} \\
& =\frac{44}{27} \\
& =1 \frac{17}{27}
\end{aligned}
$$

2.

$$
\begin{aligned}
\frac{-21}{25} \div \frac{35}{30} & =\frac{-21}{25} \times \frac{30}{35} \\
& =\frac{-21-3 \times 30^{6}}{25 \times 35^{\not / 1}} \\
& =\frac{-3 \times 6}{25} \\
& =-\frac{18}{25}
\end{aligned}
$$

$$
\begin{aligned}
7 \frac{5}{8} \div-3 \frac{1}{2} & =\frac{61}{8} \div \frac{-7}{2} \\
& =\frac{61}{8} \times \frac{-2}{7} \\
& =\frac{61 \times-2^{-1}}{8^{4} \times 7} \\
& =\frac{61 \times-1}{4 \times 7} \\
& =\frac{-61}{28} \\
& =-2 \frac{5}{28}
\end{aligned}
$$

5.

$$
\begin{aligned}
-2 \frac{1}{4} \div \frac{-3}{8} & =\frac{-9}{4} \div \frac{-3}{8} \\
& =\frac{-9}{4} \times \frac{-8}{3} \\
& =\frac{-99^{-3} \times-8^{-2}}{4^{1} \times \beta^{1}} \\
& =\frac{-3 \times-2}{1 \times 1} \\
& =6 .
\end{aligned}
$$

(or)
Further help usq.edu.au/library

