Quadratic equations

Quadratic equations have a general form of

$$
a x^{2}+b x+c=0
$$

where a, b and c are constant terms.
Quadratic equations are used in many disciplines and can be solved by a number of methods.
This presentation will focus on using factorisation.
For a different method, please see the next presentation.

This presentation will cover:

- quadratic equations
- solving quadratic equations using factorisation

Overview

Using factorisation

If the expression $x^{2}+b x+c$ (note: $a=1$) can be factorised as $(x+d)(x+e)$, the solution of the equation can be found as follows:

$$
\begin{aligned}
x^{2}+b x+c & =0 \\
(x+d)(x+e) & =0 .
\end{aligned}
$$

Since the product of two factors is 0 then at least one of the factors is 0 , thus

$$
(x+d)=0 \quad \text { or } \quad(x+e)=0 .
$$

That is,

$$
x=-d \quad \text { or } \quad x=-e .
$$

Example

Solve the quadratic $x^{2}+3 x+2=0$

$$
\begin{aligned}
x^{2}+3 x+2 & =0, \\
(x+1)(x+2) & =0, \\
x=-1 & \text { or } x=-2 .
\end{aligned}
$$

If you need to brush up on your factorising skills, please see the recording for factorisation.

Exercise

Solve these quadratic equations (using factorisation):

1. $x^{2}-5 x+6=0$
2. $x^{2}-x-2=0$
3. $x^{2}-4=0$
4. $x^{2}+5 x=6$

Example

Solve: $6 x^{2}+7 x+2=0$

$$
\begin{aligned}
6 x^{2}+7 x+2 & =0 \\
6 x^{2}+4 x+3 x+2 & =0 \\
2 x(3 x+2)+(3 x+2) & =0, \\
(3 x+2)(2 x+1) & =0 \\
3 x+2=0 & \text { or } 2 x+1=0, \\
x=-\frac{2}{3} & \text { or } x=-\frac{1}{2} .
\end{aligned}
$$

Solutions

1.

$$
\begin{aligned}
x^{2}-5 x+6 & =0, \\
(x-3)(x-2) & =0, \\
x=3 & \text { or } x=2 .
\end{aligned}
$$

2.

$$
\begin{aligned}
x^{2}-x-2 & =0, \\
(x-2)(x+1) & =0, \\
x=2 & \text { or } x=-1 .
\end{aligned}
$$

Solutions (continued)

Summary

3.

$$
\begin{aligned}
x^{2}-4 & =0, \\
(x+2)(x-2) & =0, \\
x=-2 & \text { or } x=2 .
\end{aligned}
$$

4.

$$
\begin{aligned}
x^{2}+5 x & =6, \\
x^{2}+5 x-6 & =0, \\
(x+6)(x-1) & =0, \\
x=-6 & \text { or } x=1 .
\end{aligned}
$$

